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This paper proposes a method for trimming the natural frequencies of an imperfect ring to
simultaneously eliminate certain of the frequency splits present. Initially, the e!ect of the
addition of a number of imperfection masses on a perfect ring is considered. This is achieved
by using a Rayleigh}Ritz approach in which it is assumed that the mode shapes are identical
to those of a perfect ring. By considering the inverse (the so-called trimming) problem it is
deduced that it is possible to trim N pairs of modes simultaneously by removing (a minimum
of) N trimming masses at particular locations around the ring. To calculate the trimming
mass locations, it is necessary to solve N non-linear algebraic equations. Once this has been
achieved, the magnitude of the trimming masses can be calculated easily. For the special case
of trimming a single pair of modes, analytic solutions for the magnitude and position of the
single required trimming mass are available. To trim two pairs of modes, it is shown that
a simple analytic relationship exists between the angular positions of the two required
trimming masses and that the magnitude of these masses can be obtained easily. To trim
more pairs of modes, numerical techniques are required and for this purpose a numerical
procedure is proposed. Validation of the derived analytic results and the proposed
numerical procedure is achieved by studying a number of theoretical examples.
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1. INTRODUCTION

In a perfectly axisymmetric ring, the vibration modes for a given nodal con"guration occur
in degenerate pairs that have equal natural frequencies, are spatially orthogonal and have
indeterminate angular position. In reality, imperfections due to dimensional variations and
material non-uniformity exist which give rise to small frequency splits, "xing the positions
of the modes relative to the ring. The in#uence of such imperfections is of particular
importance in the manufacture of gyroscopic rate sensors that are based on the vibration of
a ring-shaped resonator [1]. In such applications, it is often necessary to reduce the
frequency splits to the order of 0)01% to maintain strong resonant coupling between a pair
of given modes. This paper deals with the reduction and possible elimination of small
frequency splits that occur in rings, or other nominally axisymmetric structures, between
pairs of modes of vibration with the same harmonic number.

The literature contains a variety of papers analyzing the in#uence of particular types of
imperfection on the vibration characteristics of axisymmetric structures. One of the "rst
studies was performed by Tobias [2] who gave a good description of the qualitative e!ects
of imperfection. Other works include those by Charnley and Perrin, who investigated the
addition of regularly spaced point masses to a circular ring using group theory [3] and
a perturbation analysis [4]. Laura et al. [5] considered the e!ect of circumferential
variation in the wall thickness of a ring on axisymmetric modes using both a Rayleigh}Ritz
0022-460X/01/490695#30 $35.00/0 ( 2001 Academic Press
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and a "nite element analysis whilst Tonin and Bies [6] considered the in#uence of
circumferential variation in the wall thickness of an eccentric cylinder using a Rayleigh}Ritz
analysis. This approach is based on the assumption that the imperfections are small, such
that the mode shapes are unchanged by the presence of any imperfection, and has the
advantage over other methods that relatively simple expressions for the natural frequencies
and mode orientations can be obtained. This is especially the case for initially perfect
circular rings with attached masses and springs as shown by Fox [7, 8]. The Rayleigh}Ritz
approach has been used recently by Hwang et al. [9}11] to consider general pro"le
variations of a ring, and by Eley et al. [12] to consider the in#uence of anisotropy on the
vibration of circular crystalline silicon rings.

By introducing the concept of the &&equivalent imperfection mass'', Fox [7] showed that it
is possible to consider the inverse (trimming) problem. This consisted of determining the size
and location of the (single) mass that should be added to (or removed from) an initially
imperfect ring to make the frequencies of a particular pair of modes the same. Thus, it was
found that the addition of an appropriate single &&trimming''mass at a particular position on
the ring will eliminate the frequency split between one pair of nh modes of the ring and
remove the spatial orientation determinacy, where n is the number of nodal diameters of the
mode. For many practical applications, the proposed trimming procedure is extremely
useful. However, the method is restricted to the trimming of one pair of modes and is
unlikely to simultaneously eliminate the frequency splits associated with other pairs of
modes. Given that future developments in sensor technology may depend on the ability to
trim more than one pair of modes at the same time, there is a need to consider the
theoretical feasibility of simultaneously trimming a number of pairs of in-plane modes of an
imperfect ring. This forms the motivation for the current work.

The principal aim of this paper is to report the results of an investigation that extends and
generalizes the procedure and results given by Fox [7] to the simultaneous trimming of
more than one pair of modes using more than one trimming mass. A general method for
simultaneously trimming N pairs of modes using N trimming masses is outlined in section 2.
Following this, the proposed method is applied to the special cases of single- and dual-mode
trimming in sections 3 and 4, before the general multi-mode case is considered in section 5.
Numerical examples demonstrating the developed methods are presented throughout.

2. THE TRIMMING PROBLEM

Consider an imperfect ring for which the natural frequencies of the pair of orthogonal
modes having n nodal diameters are u

n1
and u

n2
. Here it is assumed that the radial (w) and

tangential displacements (u) of the ring in these four modes are given by
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where the orientations t
n1
"t

n2
!n/2n. The assumption that the mode shapes are

identical to those of a perfect ring adopted in these equations is reasonable provided that
the degree of imperfection is su$ciently small. This assumption is tested in Appendix A
using a Rayleigh}Ritz procedure.

Having made this assumption, the initial problem is to calculate the magnitudes and the
angular positions of masses which, when added to a perfect ring, would produce the
described &&imperfect'' natural frequencies and mode positions (see Figure 1). The e!ect of
additional masses and springs on the natural frequencies and mode positions of a ring has



Figure 1. The imperfection masses and the generated imperfections.
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been investigated previously by Fox [7]. In this work, a Rayleigh}Ritz approach was used
to determine analytic expressions for the split natural frequencies in terms of the
orientations and magnitudes of the added masses, radial springs and torsional springs.
The orientation, t

n
, of a speci"c nh mode and its split frequencies, u

n1
and u

n2
, were found

to be
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and R is the mean radius of the

ring. m
i
and /

i
denote the magnitude and angular co-ordinate of the ith added mass, K

rj
and

/
j

denote the sti!ness and angular co-ordinate of the jth radial spring and K
tk

and
/
k
denote the sti!ness and angular co-ordinate of the kth torsional spring. u

0n
is the natural

frequency of the original perfect ring and a
n

is the amplitude ratio =/;. The values for
u

0n
and a

n
have been calculated using the Rayleigh}Ritz method and FluK gge's

strain}displacement relations and can be seen in Appendix B.
Although the imperfections in a real ring may be introduced by both the mass and

sti!ness of its supports, such as internal legs, the aim of this method is to eliminate the
imperfections by the removal or addition of mass to the ring. Thus, the e!ect of the radial
and torsional springs can be neglected for this analysis. However, this does not invalidate
the method for use on imperfections that have been introduced by a combination of masses
and springs, as will be shown later by a numerical example.

By neglecting the e!ect of the springs, equations (5) and (6) can be simpli"ed by setting
e
jn

and e
kn

equal to zero. Also, as can be seen from equation (B8), it is possible to substitute
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the mass of the perfect ring. Thus, taking the mode orientations t
n
"t

n1
, equations (5) and

(6) become
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Equations (7)}(9) provide a means of determining the frequency splits and mode
orientations resulting from the addition of imperfection masses at particular locations to an
initially perfect ring. In what follows, the inverse (trimming) problem is considered in which
the aim is to determine the magnitude and angular location of masses that need to be
removed from the ring in order to eliminate splits between particular pairs of natural
frequencies. For this purpose, it is convenient to express the mass of the perfect ring in terms
of the mass of the imperfect ring M, which will be known at the outset of the trimming
analysis, and the added masses, i.e.,
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Substituting equation (10) into equations (8) and (9) yields:
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These equations relate the natural frequencies of the imperfect ring to the trimmed natural
frequency u

0n
. Given that u

0n
will not be known at the outset of the trimming analysis, it is

necessary to eliminate this term between equations (11) and (12). This can be achieved easily
by dividing the two equations. Following this procedure, it can be shown that the following
relationship is obtained:
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Thus, to trim the imperfect ring it is necessary to determine the magnitude (m
i
) and locations

(/
i
) of the trimming masses that satisfy both equations (7) and (13) for all of the modes

considered. Before discussing the solution of this problem, it is worthwhile noting that once
the trimming masses have been calculated it is a simple task to calculate the trimmed
natural frequencies using either equation (11) or (12), or a combination of both.
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Inspection of equations (7) and (13) indicates that the terms associated with the
magnitude of the trimming masses, m

i
, are linear, while those related to the angular

orientation of the masses, /
i
, involve non-linear, trigonometric functions. To facilitate the

solution of these equations, it is sensible to maintain the linear aspects of these equations
and, with this in mind, equation (7) is re-written as follows:
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where standard trigonometric identities have been used in the formation of this equation.
So far, the number of pairs of modes to be trimmed has not been discussed. In what

follows, it is assumed that it is required to trim N pairs of modes using N trimming masses.
Thus, denoting the N pairs of modes by n

1
, n
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trimming problem reduces to "nding values for m
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that satisfy the following two sets

of equations:
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where j"1, 2,2, N.
For the purposes of analysis, it is convenient to express equations (16) and (17) in matrix

notation as follows:

Am"0, Bm"c, (18, 19)
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In general, solutions to equations (18) and (19) enable the mass and angular positions of
the trimming masses to be obtained. Given that matrices A and B are dependent upon the
angular locations only and vector m contains the magnitude of the trimming masses only, it
may be deduced that once the angular locations are known, it is a simple task to solve
equation (19) (say) to calculate the magnitude of the trimming masses. Thus, the main
problem that needs addressing is to calculate the angular locations of the trimming masses.
This is best achieved by eliminating the mass vector m between equations (18) and (19). This
gives

AB~1c"0. (20)

Equation (20) provides what appears to be a relatively simple relationship between the
angular positions of the trimming masses. In general, numerical techniques must be used to
determine solutions to these equations. However, in some situations it will be shown that it
is possible to deduce simple analytical relationships between the angular positions of the
trimming masses that aid the solution of this equation. This is achieved by noting that all
solutions to equation (20) must satisfy the non-trivial solution to equation (18):

det(A)"0. (21)
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This determinant equation relates the angular orientations of the masses, and is
independent of the magnitude of the trimming masses. However, it is worthwhile noting
that not all solutions to equation (21) are solutions to equation (20), even though all
solutions to equation (20) are solutions to equation (21). The equations developed in this
section will be used in subsequent sections to trim single-, dual- and multi-frequency mode
pairs of an imperfect ring.

3. SINGLE MODE FREQUENCY TRIMMING

Consider the situation when N"1. In this special case, equation (20) yields
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n
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Before considering the magnitude of the trimming mass, it is worthwhile noting that for
the case considered, equation (21) yields

sin 2n(/!t
n
)"0, (23)

which possesses identical solutions to equation (22). Thus, in this case the solution to the
determinant equation is always a solution to the trimming problem.

Using equation (19) it is found that the magnitude of the trimming mass is
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Equation (24) corresponds to removing mass m from the ring, while equation (25)
corresponds to adding an identical amount but at a di!erent location. These results agree
with those published by Fox [7]. Given that these results were compared in some detail
with the previous work in reference [7], the above results are not considered any further
here.

4. DUAL-MODE FREQUENCY TRIMMING

Consider the special situation when N"2. In this case:
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Although the solution of equation (20) forms the most direct route to obtaining solutions to
the trimming problem, it is convenient here to consider the form of equation (21) "rst.
Substituting matrix A into equation (21) it may be shown (see Appendix C) that the
following relationship must be satis"ed:
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As mentioned earlier, this result is independent of the magnitude of the masses and therefore
provides a relatively simple relationship governing the possible positions of the trimming
masses. It should be re-called though that not all solutions to equation (29) are solutions to
the trimming problem.

A trivial solution to equation (29) is obtained when /
1
"/

2
. Substituting these angular

positions into matrix B yields a matrix whose inverse is ill de"ned, corresponding to
trimming masses of in"nite magnitude. The invalidity of this solution provides some
justi"cation for the reasoning that in general a single trimming mass (i.e., two masses at the
same location) cannot be used to trim two pairs of modes simultaneously.

To proceed, it is necessary to consider the solution of equation (20). This process is aided
by making use of equation (21), both directly and in its modi"ed form of equation (29). It
may be shown (see Appendix D) that this manipulation re-arranges equation (20) into the
following pair of simultaneous equations:
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It can be seen that equations (30) and (31) contain a common factor and so the solutions to
both equations can be found when
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Valid angular locations can be obtained by solving equation (32) and an equivalent form of
this equation generated by interchanging /

1
and /

2
; this interchange is permissible due to

the arbitrary choice of the angular positions of the trimming masses. Thus, the angular
positions of the trimming masses can be found by solving the following two simultaneous
equations:
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"3) for the three imperfection
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Valid solutions to equations (33) and (34) can be found graphically by considering the
intersection of the curves produced by these equations. An example that demonstrates this
process can be seen in Figure 2. This "gure shows plots of equations (33) and (34) for the
third example considered in the numerical examples section for (n

1
"2, n

2
"3). The points

where the curves intersect provide a clear indication of the angular locations at which
trimming masses could be placed. Of course, in a practical solution procedure, it is
necessary to use numerical &&search'' techniques to calculate the precise intersection points
and the accuracy to which these solutions are obtained governs the accuracy of the "nal
trimming solution.

In addition, it is worthwhile noting that equations (33) and (34) contain members of the
set of solutions /

1
"/

2
which produce ill-de"ned trimming masses, as has already been

indicated. These solutions are neglected within the solution procedure.
A translation of either /

1
or /

2
(or both) by $1803 will have no e!ect on equations (33)

and (34) due to the symmetry of the trigonometric identity. In addition, this translation will
have no e!ect on the original equations (11)} (13). For these reasons, it is only necessary to
investigate angular positions in the range 0(/

i
(1803 to "nd all possible solutions.

By considering these factors, it is possible to predict the number of unique angular
solutions that can be obtained for speci"c values of /

1
and /

2
that exist in the range

0(/
i
(1803. There will occasionally be a di!erence between the physically achievable

number of solutions and the number predicted, which will be due to the shape of equations
(33) and (34). In general, though, it may be shown [13] that there will be a maximum of
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!r)/2r2 unique angular solutions, where r is the highest common factor

of n
1

and n
2
. Thus, it is possible to predict how many unique solutions can be obtained.

Once the angular locations of the trimming masses have been identi"ed, the magnitude of
the trimming masses can be calculated. In general, it is possible to calculate the trimming
masses directly from equation (19). However, there is one limitation to this. It is possible
that the frequency splits that are to be eliminated from the imperfect ring are equivalent to
the addition of a single imperfection mass and not a pair of distinct imperfection masses, as
has been assumed. In this case, the inverse of matrix B may be indeterminable, meaning that
the trimming masses are poorly de"ned. For this reason, an alternative method of
calculating the trimming masses is required that satis"es this case. This is described next.

Using equation (18) the magnitude of mass m
2

can be found in terms of mass m
1

and, by
substituting this relationship into equation (13), the following pair of trimming mass
equations can be obtained:
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For the troublesome case of a single imperfection mass, a possible solution is that /
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and /
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is arbitrary. Substituting these values of /
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and /
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into equations (37) and (38)

produces a zero trimming mass for m
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and a mass of Mj
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for m
1
. These results are in

complete agreement with the results obtained for single-mode frequency trimming, as
illustrated by equation (24). Equations (37) and (38) have general applicability to all
dual-mode problems and are used in the numerical examples presented below.

The validity of the results presented in this section will be illustrated next for a number of
imperfect rings. The examples investigated are identical to those considered previously by
Fox [7] and consist of trimming two pairs of modes of a perfect ring to which have been
attached either:

(1) one imperfection mass;
(2) one imperfection mass and one radial spring;
(3) three imperfection masses.

The dimensions of the perfect ring are included in Appendix E and the sizes of the
imperfection masses and the radial springs are speci"ed as each example is considered.

The "rst step in each example is to calculate the original frequency splits. For cases (1)
and (3), which involve added masses only, this is achieved easily using equations (7)} (9).
However, for case (2) it is necessary to use a more complete form of these equations, taking
into account the e!ect of the spring. In this case, the original frequency splits and mode
orientations can be found from equations (5) and (6) by setting e

kn
equal to zero and

replacing j by p:
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where e
pn

is given by

e
pn
"

K
rp
R(1!l2)

2nEa[(n2!a2
n
)#b (1!n2)2a2

n
]

(42)

and all other notations are de"ned in Appendix F.
Following the calculation of the initial frequency splits, it is necessary to consider the

trimming masses necessary to correct for the imposed frequency splits for two di!erent pairs
of modes.

(1) One imperfection mass. Consider the addition of a single imperfection mass of mass
0)37 kg to the ring speci"ed in Appendix E. For the purposes of analysis, it is convenient to
locate the imperfection mass at the angular origin. As expected, it can be shown that the
removal of this mass will eliminate all frequency splits. In addition to this solution, it will be
shown that there is also a set of non-trivial solutions, which simultaneously eliminate the
frequency splits in the modes with n

1
and n

2
nodal diameters. The case considered here is

that of trimming the n
1
"2 and n

2
"3 modes simultaneously.

The solutions to this problem can be found analytically, obviating the need to use the
proposed graphical method. This is possible due to the symmetry of the values of j

n
for the

single mass case. It was shown in section 3 that the application of a single imperfection
mass, m

1
, at an angular position /"0 will orientate all of the modes to the same angle such

that t
n
"/ and that by the substitution of these conditions into equations (11) and (12), the

frequency splits are determined. By substituting the relevant frequency splits into
equation (14) it can be shown that

j
n1
"j

n2
"m

1
/(m

1
#M

0
) . (43)

This relationship simpli"es the pair of simultaneous equations (33) and (34) that need to be
solved to obtain the locations of the trimming masses, giving
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where d
1
"d

2
"0 has been used since t

n
"0. These equations provide two sets of angular

solutions, such that
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1
.

These angular locations are shown graphically in Figure 3. The masses that need to be
attached at these angular positions are determined using equations (37) and (38).

The e!ect that the trimming masses have on the frequency splits for the n"2, 3, 4 and
5 modes is recorded in Table 1. The frequencies shown in the "rst row of the table
correspond to the original frequencies of the imperfect ring. One of each pair of frequencies
is orientated such that it has a radial antinode at t

n
"0. The second row shows the trivial

solution, in which /
2

is irrelevant as there is no need to place a physical mass at that point.
The other rows show all other solutions to equations (44) and (45). Only a single frequency



Figure 3. Solutions for (n
1
"2, n

2
"3) for the single imperfection mass example.
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has been recorded for n"2 and 3 as the procedure trims the pairs of unique frequencies
into pairs of degenerate (Dg.) identical frequencies. For reasons already stated, the negative
valued angular positions have not been included. As can be seen in Table 1, angular
positions (/

1
, /

2
) and (180!/

1
, 180!/

2
) produce the same trimming masses and trim the

n"2 and 3 frequency splits to the same natural frequency. This is a consequence of the
symmetry of equations (37) and (38). In the general case, this will not be observed, as it is
rare for both (/

1
, /

2
) and (180!/

1
, 180!/

2
) to be solutions to the trimming problem.

The e!ect that the trimming masses have on the n"4 and 5 modes of the ring is also
shown in Table 1. Since the orientations of the modes do not necessarily remain at 03, the
speci"c orientations of the modes have been included. It can be seen that, with the exception
of the removal of the original imperfection mass, the addition of the trimming masses do not
eliminate the frequency splits in all modes shown. The u

n2
mode of the n"5 modes is not

greatly a!ected by the trimming masses as the masses are located at radial nodal positions.
However, all other frequencies are signi"cantly changed.

From the results presented it can be seen that, for the case considered, a pair of trimming
masses can be used to eliminate the frequency splits of two pairs of modes, but that the e!ect
on other modes cannot be controlled. Of course, in practise it is extremely unlikely that the
frequency splits can be represented by a single imperfection mass. For this reason, it is
necessary to consider some more complex imperfections.

(2) One imperfection mass with one radial spring. Consider an imperfect ring that can be
represented by a perfect ring to which has been attached a single mass and a single radial
spring. The reason for this investigation is that the previous example did not take into
account a means by which the system can be supported. For instance, the ring used in
a vibrating gyroscope is supported by a number of legs attached either in the form of
internal spokes or external supports. These legs not only add sti!ness to the ring but also
alter the natural frequencies of the structure. To test fully the proposed method the in#uence
of the sti!ness of the supports is considered here.



TABLE 1

¹rimming mass solutions for dual-mode trimming case (1)

Trimming masses n"2 n"3 n"4 n"5

/
1

m
1

/
2

m
2

t
n

u
n1

u
n2

t
n

u
n1

u
n2

t
n

u
n1

u
n2

t
n

u
n1

u
n2

(deg) (kg) (deg) (kg) (deg) (Hz) (Hz) (deg) (Hz) (Hz) (deg) (Hz) (Hz) (deg) (Hz) (Hz)

* * * * 0 35)390 36)417 0 99)638 103)51 0 190)69 198)88 0 308)09 321)95
0 !0)370 N/A 0 Dg. 36)779 Dg. 104)02 Dg. 199)46 199)46 Dg. 322)57 322)57

36 0)599 72 0)370 Dg. 33)843 Dg. 95)723 !9)0 176)32 191)73 0 277)81 320)35
36 0)370 108 !0)229 Dg. 35)570 Dg. 100)60 !4)5 184)57 202)48 0 303)05 321)72
36 0)229 144 0)229 Dg. 34)880 Dg. 98)655 0 184)18 194)57 0 292)62 321)19
72 !0)599 108 !0)599 Dg. 39)028 Dg. 110)39 0 194)86 233)72 0 364)14 323)97
72 !0)229 144 0)370 Dg. 35)570 Dg. 100)60 4)5 184)57 202)48 0 303)05 321)72

108 0)370 144 0)599 Dg. 33)843 Dg. 95)723 9)0 176)32 191)73 0 277)81 320)35

Dg. indicates a degenerate pair of modes.
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TABLE 2

¹rimming mass solutions for dual-mode trimming case (2)

Trimming masses n"2 n"3 n"4 n"5

/
1

m
1

/
2

m
2

t
n

u
n1

u
n2

t
n

u
n1

u
n2

t
n

u
n1

u
n2

t
n

u
n1

u
n2

(deg) (kg) (deg) (kg) (deg) (Hz) (Hz) (deg) (Hz) (Hz) (deg) (Hz) (Hz) (deg) (Hz) (Hz)

* * * * 0 35)390 36)958 0)50 99)740 103)622 0 190)80 198)88 !0)03 308)13 321)99
0)19 !0)465 89)03 !0)096 Dg. 37)530 Dg. 105)507 0)57 204)60 199)78 8)87 327)58 326)15
1)94 !0)468 126)73 0)116 Dg. 36)997 Dg. 104)009 8)44 202)05 196)62 4)27 327)43 317)24
8)65 !0)406 168)61 !0)323 Dg. 37)977 Dg. 106)763 !8)95 202)97 206)19 !1)32 320)62 341)90

35)33 0)780 68)91 0)490 Dg. 33)512 Dg. 94)212 !10)93 173)39 188)59 !1)24 270)56 319)16
36)87 0)488 105)09 !0)302 Dg. 35)723 Dg. 100)429 !1)64 183)81 202)38 2)04 300)38 323)12
39)02 0)316 141)32 0)300 Dg. 34)793 Dg. 97)815 !3)85 181)22 194)29 0)14 288)88 319)49
51)28 0)123 178)34 !0)452 Dg. 36)939 Dg. 103)846 !11)14 201)35 196)66 !4)67 326)88 316)79
72)97 !0)791 107)52 !0)781 Dg. 40)473 Dg. 113)783 4)41 200)50 241)10 0)34 388)60 324)89
75)24 !0)318 143)62 0)482 Dg. 35)773 Dg. 100)570 !1)48 187)33 198)55 !1)94 300)94 323)39

111)40 0)516 145)15 0)791 Dg. 33)445 Dg. 94)025 !10)41 188)16 173)08 1)58 269)74 319)00

Dg. indicates a degenerate pair of modes.
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Consider the addition of a single imperfection mass of mass 0)37 kg to the original perfect
ring, which is being supported by a massless radial spring with a sti!ness of 7400 N/m at an
angle of 453 to the imperfection mass within the plane of the ring. This is a reasonable
arrangement to introduce a degree of sti!ness imperfection into the system although it may
be argued that massless springs do not exist.

As with the single imperfection mass example, the "rst two modes will be trimmed and
then the e!ect that this trimming has on the next two modes will be considered. The
trimmed modes for the n"2 and 3 case are recorded in Table 2 with the original
untrimmed frequencies heading each of the columns. The e!ect that these trimming
masses have on the n"4 and 5 modes is also shown in Table 2. As in the previous
example considered, it is observed that the frequency splits for these modes have not
been eliminated.

A comparison of the solutions to this problem with the solutions to the single
imperfection mass problem indicates only small di!erences between the angular positions of
the trimming masses. These di!erences may be observed in Figure 4 and are due to the
presence of the spring. On comparing Tables 1 and 2 it may be seen that although the
masses are situated at similar locations, the trimming masses have increased signi"cantly in
magnitude in case (2).

The symmetry of the angular positions (/
1
, /

2
) and (180!/

1
, 180!/

2
) observed in case

(1) is approximately satis"ed in case (2) (see Table 2). The small di!erence in angular
solutions that was introduced by the radial spring means that there are no exact pairs of
solutions (/

1
, /

2
) and (180!/

1
, 180!/

2
). There are approximate pairs, however, and the

required trimming masses and trimmed natural frequencies at these angular positions are
comparable.

The procedure has been validated for the simultaneous trimming of two pairs of modes of
an imperfect ring that can be represented by a perfect ring to which a single imperfection
Figure 4. Comparison of the solutions for (n
1
"2, n

2
"3) between the single imperfection mass example and

the combined imperfection mass and spring example. #, spring and mass example; ], single mass example.



Figure 5. Solutions for (n
1
"2, n

2
"3) for the three imperfection masses example.

Figure 6. Solutions for (n
1
"2, n

2
"4) for the three imperfection masses example.
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mass and a single spring have been attached. Next, a ring with a more complex form of
imperfection is considered.

(3) ¹hree imperfection masses. Consider the attachment of three imperfection masses (0)1,
0)2 and 0)3 kg) at pre-de"ned angular locations (0, 20 and 703, respectively) on the initially
perfect ring. The cases considered here correspond to trimming all possible pairs of modes
when the number of nodal diameters n"2, 3, 4, 5. Figures 5}10 show the complete set of



Figure 7. Solutions for (n
1
"2, n

2
"5) for the three imperfection masses example.

Figure 8. Solutions for (n
1
"3, n

2
"4) for the three imperfection masses example.
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angular solutions to equations (33) and (34), as calculated using the described graphical
method, for the speci"ed pairs of modes. As with the previous two examples, the e!ect that
di!erent pairs of trimming masses have on the n"2, 3, 4, 5 pairs of modes is recorded in
Table 3 for the case when n

1
"2 and n

2
"3.

It can be seen from Table 3 that, as expected, the n"2 and 3 modes are trimmed, while
the frequency splits for the n"4 and 5 modes have not been eliminated. The e!ect that the



Figure 9. Solutions for (n
1
"3, n

2
"5) for the three imperfection masses example.

Figure 10. Solutions for (n
1
"4, n

2
"5) for the three imperfection masses example.
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trimming masses have on these latter modes is varied. Some of the frequency splits are
increased, whilst others are reduced. A comparison of these results with similar results
obtained for the cases when n

1
"2, n

2
"4 and n

1
"3, n

2
"4 (see Figures 6 and 8) indicate

that with careful calculations, the frequency splits of certain modes may be deliberately



TABLE 3

¹rimming mass solutions for dual-mode trimming case (3)

Trimming masses n"2 n"3 n"4 n"5

/
1

m
1

/
2

m
2

t
n

u
n1

u
n2

t
n

u
n1

u
n2

t
n

u
n1

u
n2

t
n

u
n1

u
n2

(deg) (kg) (deg) (kg) (deg) (Hz) (Hz) (deg) (Hz) (Hz) (deg) (Hz) (Hz) (deg) (Hz) (Hz)

* * * * !6)95 35)056 35)656 11)82 97)832 102)423 23)16 188)02 195)89 !4)14 305)71 314)97
3)95 !0)523 144)31 !0)398 Dg. 37)602 Dg. 106)355 27)11 190)69 220)36 4)09 348)53 313)78
6)86 !0)298 107)92 0)248 Dg. 35)483 Dg. 100)362 23)74 184)87 201)01 !5)36 301)53 321)88

12)90 !0)199 71)00 !0)262 Dg. 36)437 Dg. 103)059 28)54 196)00 199)25 !7)77 314)11 325)33
37)63 0)406 172)18 0)195 Dg. 34)115 Dg. 96)493 32)84 179)93 190)56 !2)17 288)99 310)60
40)65 0)335 134)82 !0)133 Dg. 34)934 Dg. 98)809 28)03 186)30 192)78 2)55 298)52 314)92
44)02 0)327 97)15 0)159 Dg. 34)346 Dg. 97)145 29)24 186)92 185)62 0)01 298)01 304)56
75)07 !0)327 155)81 0)185 Dg. 35)690 Dg. 100)947 17)87 188)46 199)08 4)49 317)66 308)58
77)86 !0)480 119)16 !0)293 Dg. 37)216 Dg. 105)263 12)66 193)83 210)91 !8)66 309)93 345)82

111)48 0)522 150)52 0)478 Dg. 33)348 Dg. 94)321 19)92 170)80 192)91 3)43 278)58 308)68

Dg. indicates a degenerate pair of modes.
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reduced. For example, it is found that the addition of a mass of 0)131 kg at 96)953 and
a mass of 0)305 kg at 43)243 simultaneously trims the n"2 and 4 modes, while the addition
of a mass of 0)133 kg at 98)663 and a mass of 0)335 kg at 43)053 simultaneously trims the
n"3 and 4 modes. Hence, the addition of a mass of 0)159 kg at 97)153 and a mass of
0)327 kg at 44)023 signi"cantly reduces the frequency split of the n"4 mode.

This has more signi"cance in a theoretical investigation than in a physical trimming
procedure. The sensitivity of physical equipment limits the accuracy of the angular
positions. Also, the trimming masses have been described as point masses but in reality they
will have a "nite width that may overlap all three combinations of angles. Thus, the above
comparison considers the ideal situation.

Nonetheless, the frequency split in the n"4 mode still is larger than is usually desirable
so it seems infeasible that two trimming masses can be used to trim more than two modes
simultaneously.

In summary, it has been demonstrated, for the three cases considered, that it is possible to
simultaneously eliminate the frequency splits of two pairs of modes by the addition
of two masses to an initially imperfect ring. In addition, it has been shown that in general it
is not possible to deliberately trim more than two pairs of modes with only two trimming
masses.

5. MULTI-MODE FREQUENCY TRIMMING

The basis of the method for trimming three or more pairs of modes simultaneously was
described in section 2. To calculate the angular locations of the trimming masses it is
necessary to "nd solutions to equation (20). Given that the matrix appearing on the
left-hand side of this equation involves the inverse of matrix B, it is inevitable that the
resulting simultaneous equations will be highly non-linear in terms of trimming mass
location and that simple analytical solutions are not possible. Indeed, the authors consider
the relationships arising from the tri-mode trimming case too complex for analytical
manipulation. For this reason, it is necessary to resort to numerical techniques. One
numerical procedure that is well-suited to this particular problem is to square each of the
simultaneous equations appearing in equation (20), take the sum of these squares, and then
"nd the angular positions /

i
(i"1, 2,2, N) that ensure the single resultant equation is

zero. That is, calculate the solutions to:

N
+
i/1
A

N
+
j/1

f
ij
j
njB

2
"0, (46)

where f
ij

is the ijth element of the matrix AB~1, which can be calculated easily. Following
the numerical solution of this equation, the trimming masses can be calculated using
equation (19). Thus, it should be possible to simultaneously trim the frequency splits of N nh
modes using N trimming masses. This method will be tested in the following numerical
example for N"3.

Consider the attachment of three imperfection masses (0)1, 0)2 and 0)3 kg) at pre-de"ned
angular locations (0, 20 and 703, respectively) on the initially perfect ring in a similar way to
those considered in case (3) for dual-mode trimming. It has been hypothesized that three
vibrational modes can be simultaneously trimmed by the addition of three trimming
masses. The example that is to be considered is the trimming of the "rst three vibrational
modes (n

1
"2, n

2
"3, n

3
"4) with the e!ect of the three trimming masses on the next mode

(n
4
"5) also being illustrated.



Figure 11. Solutions for (n
1
"2, n

2
"3, n

3
"4) for the three trimming masses example.
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Using an iterative search process based on a grid search method [14], a set of solutions
to equation (46) were calculated when N"3. The complete set of angular solutions
found is shown in Figure 11. Nineteen unique triplets of angular positions were found
and each triplet is shown by a vertical line with the three angular solutions in each triplet
represented by a cross. It can be observed from Figure 11 that the angular solutions
tend to lie within certain regions. This suggests that there may be a grid of intersecting
planes akin to the grid of intersecting lines that represents the angular solutions for
two trimming masses. However, the equations that describe these planes are not obvious
from either the numerical example or from the analysis of equations (20) and (21) for
N"3. As in previous examples, some of the solutions have been highlighted in a table
but for clarity, not all of the solutions have been included. The solutions are recorded
in Table 4.

As expected, the trivial solution of removing the original imperfection masses from the
positions at which they had been attached has been obtained. This solution eliminates the
frequency splits from all the modes of the ring and this has been shown for the "rst four
modes. This is the only case in which the n

4
"5 mode is trimmed. The other three modes

have been trimmed to degenerate pairs of modes as shown for each triplet of trimming
masses. As was the situation for two trimming masses, the trimming masses are required to
be either added to or removed from the ring. This means that both methods of trimming can
be successfully used.

A comparison of solutions for tri-mode and dual-mode trimming clari"es, for one pair of
angular solutions, the coincidental trimming of the n

3
"4 mode when the n

1
"2 and

n
2
"3 modes were being trimmed in the dual-mode trimming process. As shown in Table 4,

the addition of trimming masses at 44)02 and 97)153 signi"cantly reduced the frequency split
of the n"4 mode. Now, considering Table 4, it can be seen that there is a comparable pair
of trimming masses at similar angular positions with the addition of a third signi"cantly
smaller mass on the ring.

Hence, it has been shown that it is possible to calculate the three trimming masses that
are required to simultaneously eliminate the frequency splits from three modes using
a numerical method. The same numerical method can then be used to calculate N trimming
masses to simultaneously eliminate N frequency splits.



TABLE 4

¹rimming mass solutions for the tri-mode frequency trimming case

Trimming masses n"2 n"3 n"4 n"5

/
1

m
1

/
2

m
2

/
3

m
3

t
n

u
n1

u
n2

t
n

u
n1

u
n2

t
n

u
n1

u
n2

t
n

u
n1

u
n2

(deg) (kg) (deg) (kg) (deg) (kg) (deg) (Hz) (Hz) (deg) (Hz) (Hz) (deg) (Hz) (Hz) (deg) (Hz) (Hz)

* * * * * * !6)95 35)056 35)656 11)82 97)832 102)423 23)16 188)02 195)89 !4)14 305)71 314)97
0 !0)1 20 !0)2 70 !0)3 Dg. 36)779 Dg. 104)026 Dg. 199)46 Dg. 322)57 322)57
7)54 0)128 41)73 0)438 128)35 !0)145 Dg. 34)477 Dg. 97)514 Dg. 186)97 3)25 291)31 314)81

12)26 !0)759 130)75 !0)577 161)50 !0)874 Dg. 41)584 Dg. 117)617 Dg. 225)52 !1)39 319)10 437)89
43)42 0)327 96)97 0)131 135)70 !0)023 Dg. 34)448 Dg. 97)434 Dg. 186)82 1)06 298)25 306)16
72)93 !0)475 106)30 !0)206 163)92 0)174 Dg. 36)550 Dg. 103)379 Dg. 198)22 2)10 334)92 307)91

102)18 0)759 133)10 0)951 163)28 0)650 Dg. 31)084 Dg. 87)919 Dg. 168)57 7)93 298)98 252)20

Dg. indicates a degenerate pair of modes.
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TABLE 5

Rayleigh}Ritz analysis of the e+ect of the addition of imperfection masses to a perfect ring

Rayleigh}Ritz solutions for three generalized co-ordinates
Natural frequencies and

orientations for one Natural Ratio of
Imperfection masses (magnitude and angular position) generalized coordinate frequencies displacements Orientations

m
1

/
1

m
2

/
2

m
3

/
3

u
n

t
n

u
n

t
1

t
2

t
3

(kg) (deg) (kg) (deg) (kg) (deg) (Hz) (deg) (Hz) ;
1
:;

2
:;

3
(deg) (deg) (deg)

0)01233 0 0)02466 20 0)03699 70 36)5585 !6)95 36)5592 0)0127:1:0)0013 32)50 !6)91 10)44
36)6350 38)05 36)6363 0)0133:1:0)0004 !54)02 38)09 !23)39

103)1995 11)82 103)2115 0)0138:0)0210:1 36)46 !4)22 11)84
103)8257 !18)18 103)8272 0)0072:0)0066:1 !44)20 !44)21 !18)16

0)1 0 0)2 20 0)3 70 35)096 !6.95 35)137 0)0967:1:0)0096 33)01 !6)67 10)32
35)656 38)05 35)728 0)1013:1:0)0030 !53)59 38)33 !23)25
97)832 11)82 98)435 0)0917:0)1541:1 36)49 !4)22 12)00

102)423 !18.18 102)512 0)0504:0)0487:1 !43)72 !43)65 !18)01
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6. CONCLUSION

A method of calculating the trimming masses needed to simultaneously trim a number of
pairs of modes of a ring has been described. This has been achieved by extending the
concept of &&equivalent imperfection mass'' proposed by Fox [7] to multiple pairs of
modes. It is found for the case of dual-mode trimming that a graphical method can be
used to aid the calculations, and that two trimming masses can be used to trim two pairs
of modes. The method is validated through theoretical calculations for rings with
imperfections arising from the attachment of discrete masses and springs. In order
to trim three or more pairs of modes a numerical method is proposed. The validity of
this method has been veri"ed for tri-mode frequency trimming of a speci"c numerical
example, and it can be inferred from this that the numerical method can be used to trim
more than three pairs of modes.
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APPENDIX A: RAYLEIGH}RITZ ANALYSIS OF THE EFFECT OF IMPERFECTION
MASSES ON THE NATURAL FREQUENCIES AND MODE SHAPES OF A PERFECT RING

It is possible to test the assumption that the mode shapes of a ring will be una!ected by
small imperfection masses by performing a Rayleigh}Ritz analysis on the ring. This analysis
has been performed using the "rst three generalized co-ordinates of the ring and these
results are compared with the mode shapes assumed in equations (1)}(4) and the natural
frequencies and orientations, which are given by equations (7), (8) and (9). The analysis has
been simpli"ed by "xing the amplitude ratio, a

n
, of the nth co-ordinate as n, where

a
n
"=

n
/;

n
. This is a valid substitution provided that it is the in-plane #exural modes of the

ring that are being considered.
The results of this analysis are recorded in Table 5 for the "rst two elastic modes of

vibration, which are modi"ed forms of the n"2 and 3 modes. The perfect ring that has been
used is the same ring as that considered for the other numerical examples. The mass of this
ring is 7)3984 kg and the "rst set of imperfection masses have been chosen to total 1% of this
mass. Initially, it is assumed that the mode shapes of the "rst two elastic modes of vibration
can be approximated as the displacement of one generalized co-ordinate, nh, as indicated by
equations (1)}(4). Thus, the frequency splits and orientations of these two modes can be
calculated from equations (7) to (9) and these are the data recorded in the central column of
Table 5. A Rayleigh}Ritz analysis has then been performed using the "rst three generalized
co-ordinates (n"1, 2, 3). The natural frequencies of the "rst two elastic modes and the
relative displacements and orientations of the generalized co-ordinates have been
calculated, and recorded in the "nal set of columns of Table 5, for each natural frequency.

On comparing the natural frequencies that have been found by the single generalized
co-ordinate and the three generalized co-ordinates methods, it can be seen that the
di!erence between the two methods for the natural frequencies of the "rst elastic mode is
less than 0)01%, which is the largest desirable frequency split in any mode, as was
mentioned earlier. The largest di!erence between the two methods for the natural
frequencies of the second elastic mode is 0)01%. Thus, the di!erences between the two
methods are within the required tolerances for a combined imperfection mass of 1% of the
total mass of the ring. Also, considering the ratio of the displacements of the three
generalized co-ordinates, it can be seen that for the "rst elastic mode it is the displacement of
the second generalized co-ordinate that is dominant and the orientation of the second
generalized co-ordinate is close to the orientation of the single co-ordinate solution.
A similar result can be observed for the second elastic mode.

For emphasis, the numerical examples recorded in Tables 1}4 have used larger
imperfection masses than is ideal. However, the second set of frequency splits recorded in
Table 5 shows that even for imperfection masses that are almost 10% of the total mass of
the ring, the variation of the natural frequencies is less than 1%. In addition, the
displacement of the nth generalized co-ordinate is still the dominant term for the
displacement of the nth mode.

Thus, it can be seen that it is reasonable to assume that the mode shapes of an imperfect
ring are identical to those of the perfect ring from which it was formed.

APPENDIX B: DERIVATION OF VALUES FOR THE NATURAL FREQUENCY,
u

0n
, AND THE AMPLITUDE RATIO, a

n
, OF A PERFECT RING

The natural frequency of the perfect ring can be found by considering the kinetic energy,
u2

0n
¹, and strain energy, S, of the ring. These are given in Appendix 2 of reference [15],



MULTI-MODE TRIMMING 719
having assumed FluK gge's strain}displacement relations, after integrating through the
thickness of the shell. To remain consistent with the orientations of the radial and tangential
motion of the ring as given in reference [7] it has been necessary to modify the equations
given in reference [15] by replacing v with u, u with !v and x with !y. Also, the mean
radius of the ring has been changed from a to R. Another modi"cation to the equations
given in reference [15] is that the terms that form perfect squares have been collected to
produce a more manageable equation.

u2
0n
¹

0n
"

Rho
2 P

2n

0
P

L

0
CA

Lu

LtB
2
#A

Lv

LtB
2
#A

Lw

LtB
2

D dy d/, (B1)
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ERh
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2
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!wB

2
#

2l
R
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!wB#

(1!l)
2 A

Lu

Ly
#

1

R
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L/B
2
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#

1

R2 A
L2w

L/2
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2
#2l

L2w

Ly2 A
L2w

L/2
#
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L/B#2R
Lv

Ly

L2w

Ly2

H#b G #(1!l) G
2 A

L2w

LyL/B
2
#

1

2R2 A
Lv

L/B
2
!

1

R

Lv

L/
L2w

LyL/H#

3

2 A
Lu

LyB
2
#3

Lu

Ly

L2w

LyL/

dy d/.

(B2)

It has been assumed that the axial length of the cylinder is short enough so that there is no
variation in the dependence of the vibrational motion on the axial position, y, of an element
of the ring. Therefore, terms involving di!erentiation with respect to y have been neglected
from the strain energy equation.

S
0n
"

ERh

2(1!l2) P
2n

0
P

L

0
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1
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Lu
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2R2 A
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L/B
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#b G

1

R2 A
L2w

L/2
#wB

2

#

(1!l)
2R2 A

Lv

L/B
2

HD dy d/. (B3)

Equation (B3) can also be expressed as

S
0n
"

Eh¸

2R(1!l2) P
2n

0
CA

Lu

L/
!wB

2
#(1!l) (1#b) A

Lv

L/B
2
#b A

L2w
L/2

#wB
2

D d/. (B4)

For in-plane vibrations, it is possible to neglect the axial motion, which is represented by
v(/, t). The kinetic and strain energies can then be found by substitution of the correct forms
of the radial and tangential displacements, which are:

w (/, t)"= cos n/ exp(iu
0n

t), u (/, t)"; sin n/ exp(iu
0n

t). (B5, B6)
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By substituting equations (B5) and (B6) into equations (B4) and (B1), and setting the
amplitude ratio a

n
"=/;, it can be seen that

S
0n
"

;2Eh¸n
2R(1!l2)

((n!a
n
)2#ba2

n
(1!n2)2), (B7)

u2
0n
¹

0n
"u2

0n
;2Rh¸on(1#a2

n
)/2. (B8)

The natural frequency, u
0n

, which can be found from the ratio of the strain and kinetic
energies is therefore,

u2
0n
"

S
0n

¹
0n

"

E ((n!a
n
)2#ba2

n
(1!n2)2)

R2o (1!l2) (1#a2
n
)

. (B9)

Finally, the amplitude ratio, a
n
, can be found from the Rayleigh}Ritz method by setting

Lu2
0n

/La
n
"0.

Lu2
0n

La
n

"

2En

R2o (1!l2) (1#a2
n
)2 Ga2n#a

n

(1!n2) (1#b (1!n2))

n
!1H . (B10)

It can be easily seen from equation (B10) that

a
n
"

(n2!1)(1#b (1!n2))

2n
$S

(1!n2)2 (1#b (1!n2))2

4n2
!1 . (B11)

From equation (B11), two amplitude ratios arise, one corresponding to the #exural
modes and the other corresponding to the extensional modes.

For many practical rings, the constant b is small and terms containing b can be neglected
in equation (B11). In those cases, the amplitude ratio of the #exural mode can be shown to
be equal to n and that of the extensional mode can be shown to be equal to !1/n. This will
simplify the expression for the natural frequency of a perfect ring.

This paper deals primarily with the #exural modes of the ring and so equation (B9) can be
simpli"ed for these modes by a substitution of a

n
"n. Hence,

u2
0n
"

Eb (1!n2)2n2

R2o (1!l2) (1#n2)
. (B12)

APPENDIX C: DERIVATION OF EQUATION (29)

By substituting the matrix A shown in equation (26) into equation (21) it can be seen that

K
sin 2n

1
(/

1
!t

n1
) sin 2n

1
(/

2
!t

n1
)

sin 2n
2
(/

1
!t

n2
) sin 2n (/

2
!t

n2
) K"0. (C1)

Manipulation of this determinant creates the following two equations from which the
relationship between /

1
and /

2
can be found. The manipulations made use of the rule that

the size of the determinant will remain unchanged if one line is added to or deducted from
another line.

K
sin 2n

1
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2
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n2
) K"0, (C2)
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Expanding these two determinants and rearranging produces the following equations:
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Equations (C4) and (C5) can be rearranged, using standard trigonometric identities, into the
following forms:
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Equating the right-hand sides of equations (C6) and (C7) produces the following
equation:
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which also can be expressed as
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APPENDIX D: DERIVATION OF EQUATIONS (30) AND (31)

Substitution of equations (26), (27) and (28) into equation (20) produces the following pair
of simultaneous equations:
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Either of equations (D1) and (D2) may be used to produce the same overall solutions. The
choice of equation must be consistent with the choice made in Appendix C as a similar
relationship to that shown by equations (C6) and (C7) needs to be found. Thus, equation
(D2) is manipulated into the form:
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By re-expressing each of the cosine terms, equation (D3) can be expanded into a form that is
more comparable with equations (C6) and (C7). Consider the expansion of
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This can be rearranged, using standard trigonometric identities, to show that
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Performing the same manipulations on each of the cosine terms in equation (D3) will
re-express equation (D3) as
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Equations (30) and (31) can now be found by comparison of equation (D6) with equations
(C6) and (C7) respectively. Equating the right-hand sides of equations (C6) and (D6) shows
that
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This can also be written as
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Substitution of equation (C9) simpli"es equation (D8) into
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Likewise, equating equations (C7) and (D6) shows that
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This can also be written as
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Substitution of equation (C9) simpli"es equation (D11) into
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APPENDIX E: DIMENSIONS AND MATERIAL PROPERTIES OF THE PERFECT RING
(TABLE E1)

Mean radius"0)3 m; Radial thickness"0)005 m; Axial length"0)1 m; Mass of
ring"7)3984 kg; Density"7850 kg/m3; Young's modulus"2)06]1011 N/m2; the
Poisson ratio"0)3.



TABLE E1

Natural frequencies and amplitude ratios

Nodal diameters, n
j

Natural frequency (Hz) Amplitude ratio=/;

2 36)779 1)99992
3 104)026 2)99956
4 199)461 3)99877
5 322)571 4)99743
6 473)205 5)99540

724 A. K. ROURKE E¹ A¸.
APPENDIX F: NOMENCLATURE

a ring cross-sectional area"h¸
E Young's modulus
h ring radial thickness
K

rp
sti!ness of pth radial ring

¸ ring axial length
R ring mean radius
b ("h2/(12R2))
o density of ring material
l the Poisson ratio
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